Variational Description of Gibbs-non-Gibbs Dynamical Transitions for the Curie-Weiss Model
نویسندگان
چکیده
منابع مشابه
Variational description of Gibbs-non-Gibbs dynamical transitions for the Curie-Weiss model
We perform a detailed study of Gibbs-non-Gibbs transitions for the Curie-Weiss model subject to independent spin-flip dynamics (“infinite-temperature” dynamics). We show that, in this setup, the program outlined in van Enter, Fernández, den Hollander and Redig [3] can be fully completed, namely that Gibbs-non-Gibbs transitions are equivalent to bifurcations in the set of global minima of the la...
متن کاملA Large-deviation View on Dynamical Gibbs-non-gibbs Transitions
We develop a space-time large-deviation point of view on Gibbs-non-Gibbs transitions in spin systems subject to a stochastic spinflip dynamics. Using the general theory for large deviations of functionals of Markov processes outlined in a recent book by Feng and Kurtz, we show that the trajectory under the spin-flip dynamics of the empirical measure of the spins in a large block in Z satisfies ...
متن کاملVariational Principle for Fuzzy Gibbs Measures
In this paper we study a large class of renormalization transformations of measures on lattices. An image of a Gibbs measure under such transformation is called a fuzzy Gibbs measure. Transformations of this type and fuzzy Gibbs measures appear naturally in many fields. Examples include the hidden Markov processes (HMP), memoryless channels in information theory, continuous block factors of sym...
متن کاملGibbs-non-Gibbs properties for evolving Ising models on trees
In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-boundary-condition Gibbs state) behaves different from the plus and the minus state. E.g. at large times, all configurations are bad for the intermediat...
متن کاملComplete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model
Using the theory of large deviations, we analyze the phase transition structure of the Curie-WeissPotts spin model, which is a mean-field approximation to the Potts model. This analysis is carried out both for the canonical ensemble and the microcanonical ensemble. Besides giving explicit formulas for the microcanonical entropy and for the equilibrium macrostates with respect to the two ensembl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2012
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-012-1646-1